Remodeling Tissue Interfaces and the Thermodynamics of Zipping during Dorsal Closure in Drosophila.
نویسندگان
چکیده
Dorsal closure during Drosophila embryogenesis is an important model system for investigating the biomechanics of morphogenesis. During closure, two flanks of lateral epidermis (with actomyosin-rich purse strings near each leading edge) close an eye-shaped opening that is filled with amnioserosa. At each canthus (corner of the eye) a zipping process remodels the tissue interfaces between the leading edges of the lateral epidermis and the amnioserosa. We investigated zipping dynamics and found that apposing leading edge cells come together at their apical ends and then square off basally to form a lateral junction. Meanwhile, the purse strings act as contractile elastic rods bent toward the embryo interior near each canthus. We propose that a canthus-localized force contributes to both bending the ends of the purse strings and the formation of lateral junctions. We developed a thermodynamic model for zipping based on three-dimensional remodeling of the tissue interfaces and the reaction dynamics of adhesion molecules in junctions and elsewhere, which we applied to zipping during unperturbed wild-type closure and to laser or genetically perturbed closure. We identified two processes that can contribute to the zipping mechanism, consistent with experiments, distinguished by whether amnioserosa dynamics do or do not augment canthus adhesion dynamics.
منابع مشابه
Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملUpregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development.
Tissue dynamics during dorsal closure, a stage of Drosophila development, provide a model system for cell sheet morphogenesis and wound healing. Dorsal closure is characterized by complex cell sheet movements, driven by multiple tissue specific forces, which are coordinated in space, synchronized in time, and resilient to UV-laser perturbations. The mechanisms responsible for these attributes a...
متن کاملComplete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in Drosophila
Drosophila's dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas t...
متن کاملApoptotic force and tissue dynamics during Drosophila embryogenesis.
Understanding cell morphogenesis during metazoan development requires knowledge of how cells and the extracellular matrix produce and respond to forces. We investigated how apoptosis, which remodels tissue by eliminating supernumerary cells, also contributes forces to a tissue (the amnioserosa) that promotes cell-sheet fusion (dorsal closure) in the Drosophila embryo. We showed that expression ...
متن کاملNonmuscle Myosin II Generates Forces that Transmit Tension and Drive Contraction in Multiple Tissues during Dorsal Closure
BACKGROUND The morphogenic movements that characterize embryonic development require the precise temporal and spatial control of cell-shape changes. Drosophila dorsal closure is a well-established model for epithelial sheet morphogenesis, and mutations in more than 60 genes cause defects in closure. Closure requires that four forces, derived from distinct tissues, be precisely balanced. The pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 109 11 شماره
صفحات -
تاریخ انتشار 2015